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The use of temporal metrics for land cover change detection at coarse
spatial scales
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Abstract. Successful land cover change analysis requires selection of an appro-
priate set of variables for measuring and characterizing change. Coarse spatial
resolution satellite sensors o� er the advantage of frequent coverage of large areas
and this facilitates the monitoring of surface processes. Fine spatial resolution
satellite sensors provide reliable land cover information on a local basis. This
work examines the ability of several temporal change metrics to detect land cover
change in sub-Saharan Africa using remote sensing data collected at a coarse
spatial resolution over 16 test sites for which � ne spatial resolution data are
available. We model change in the � ne-resolution data as a function of the coarse
spatial resolution metrics without regard to the type of change. Results indicate
that coarse spatial resolution temporal metrics (i) relate in a statistically signi� cant
way to aggregate changes in land cover, (ii) relate more strongly to � ne spatial
resolution change metrics when including a measure of surface temperature instead
of a vegetation index alone, and (iii) are most e� ective as land cover change
indicators when various metrics are combined in multivariate models.

1. Introduction
The National Aeronautics and Space Administration (NASA) supports global

change research via its Earth Observing System (EOS)—an extensive collection of
satellite sensors which comprise part of NASA’s Earth Science Enterprise (Asrar and
Greenstone 1995). The Moderate Resolution Imaging Spectroradiometer (MODIS)
is one of the key instruments for land sensing on the EOS platform, which is

scheduled for launch in 1999. MODIS collects data in 36 spectral bands at 250, 500
and 1000 m spatial resolutions, while imaging the entire surface of the Earth every
1–2 days (Salomonson et al. 1989). One of the standard MODIS products will be
the MODIS Land Cover Product which includes as one of its data layers a global

1 km land cover change database. Known as the Land Cover Change Parameter,
this database is generated every three months from the most recent two years of
MODIS data (Strahler et al. 1996).

The VEGETATION sensor onboard SPOT-4 (Système Pour l’Observation de la

Terre), which was successfully launched in March 1998, also provides daily views of
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the globe at a spatial resolution of 1 km. These data likewise will be used to monitor
land cover change, although with fewer spectral bands.

In order to characterize land cover change at regional to global scales, numerous
issues must be addressed, including the problem of variable selection. Which of the
available remote sensing data streams relate to land cover change? Are some variables
more sensitive to certain types of changes than others? To what extent is it possible
to characterize processes of land cover change based on coarse spatial resolution
measures? How do measures of change scale up?

Several previous studies analysed time-series satellite data in order to develop
intra-annual (Lloyd 1990, DeFries et al. 1995, Lobo et al. 1997, Nemani and Running
1997) and inter-annual (Reed et al. 1994) pro� les of the condition of vegetation.
These studies were mostly concerned with establishing phytophenological patterns
within land cover classes. Patterns were represented by temporal metrics such as the
mean annual Normalized Di� erence Vegetation Index (NDVI), maximum annual
NDVI, etc. At present, few studies that use temporal metrics to detect land cover
change directly have appeared in the literature (although see the work of Lambin
and Ehrlich (1997)).

This research employed coarse spatial resolution temporal change metrics to
model change estimated at 16 � ne spatial resolution test sites located in sub-Saharan
Africa. The intention was to gain a basic understanding of which variables should
be most useful for land cover change analysis with MODIS and VEGETATION
data once they become available. Our concept of land cover change includes both
land cover conversions, i.e. the complete replacement of one cover type by another,
and land cover modi� cations, i.e. more subtle changes that a� ect the character of
the land cover without changing its overall classi� cation. Land cover modi� cations
are generally more prevalent than land cover conversions. A test site approach allows
particular attention to areas for which land cover change dynamics are well under-
stood. Although smaller in scope than a true global study, the sites contain a
considerable variety of ecosystems in� uenced by variable climatic and anthropogenic
conditions.

Since MODIS and VEGETATION data were not available at the time of this
study, algorithm testing and development required the use of existing data such as
those collected by the National Oceanic and Atmospheric Administration’s Advanced
Very High Resolution Radiometer (NOAA AVHRR). Spectrally, the MODIS and
VEGETATION instruments are quite di� erent from AVHRR, but AVHRR data
provide analogues to two of the shortwave bands for MODIS and VEGETATION
and two of the thermal bands for MODIS. Also, the AVHRR exhibits similarly � ne
temporal resolution to MODIS and VEGETATION, which is valuable for character-
izing vegetation phenology. Additional remote sensing data sources included SPOT
High Resolution Visible (HRV) and Landsat Thematic Mapper (TM) which provide
data at � ne spatial scales and are useful for gauging the ability of coarse-scale
variables to detect and characterize land cover change.

2. Data
2.1. Dataset

The coarse spatial resolution database employed to generate the temporal metrics
was derived from the Path� nder AVHRR Land (PAL) dataset (James and Kalluri
1994). The dataset was constructed from 10-day maximum value NDVI composites
at 8 km spatial resolution covering the years 1981–1994. Several other data layers



Global and regional land cover characterization 1417

were provided with this dataset, including the channel data associated with the
maximum NDVI values. The NDVI and thermal channels were extracted from the
full dataset as they provide complementary sources of information (Lambin and
Ehrlich 1996, Nemani and Running 1997). An ancillary geolocation layer was also
extracted.

Fine spatial resolution data consisted of six multi-temporal pairs of SPOT HRV,
Landsat TM and Landsat Multispectral Scanner (MSS) scenes collected over areas
where the land cover change dynamics were well understood at a local scale. Land
cover characterizations of the scenes were provided through research projects at the
Remote Sensing Laboratory of the University of Louvain in collaboration with
teams operating in the � eld (e.g. Mertens and Lambin 1997). Additional information
sources included personal communications with local experts in Africa.

2.2. Preprocessing of � ne spatial resolution data
The � ne-resolution data acquisitions underwent standard preprocessing including

geometric registration and radiometric calibration. Subsets of the scenes were
extracted in order to isolate speci� c areas of land cover change. Still, each subset,
or test site, was large enough to be covered by several (2 to 9) adjacent PAL pixels
in order to limit problems of misregistration at the coarser spatial resolution. As a
result, some mixing of change processes was inevitable within the test sites. In
particular, some sites were a� ected by a combination of regional-scale (often climate-
driven) changes and localized anthropogenic changes. Table 1 gives a summary of
the 16 subsites.

2.3. Preprocessing of PAL data
The NDVI data were recomposited to a 30-day time step from the original

10-day composites using maximum values in order to reduce cloud cover e� ects,
and to produce a database similar in temporal character to that of the MODIS
product design (Strahler et al. 1996). Additionally, surface temperature (T s ) images
were generated from the thermal channels employing a split-window technique (Price
1984). The T

s
data were also recomposited to a 30-day time step using maximum

values, although it is of note that the thermal data were still dependent on the NDVI
compositing process. Compositing the T s data removes some part of the dynamic
nature of the variable and retains mostly the seasonal pattern of temperature change.
Thus, while the compositing of NDVI data mainly removes atmospheric contamina-
tion from time series, the compositing of T s data also removes the information on
surface dynamics which is related to daily variations in weather and soil moisture
conditions. A cloud-screening algorithm based on the work of Saunders and Kriebel
(1988) was applied to the monthly data in order to eliminate residual cloud-
contaminated observations not removed by the compositing process. In addition to
the NDVI and T s time series, a time series of the T s/NDVI ratio was computed, as
this was shown to be an e� ective indicator of land cover change in earlier studies
(Lambin and Ehrlich 1996, 1997). As in these previous studies, the arctangent of
T s/NDVI was computed to avoid nonlinear e� ects associated with a denominator
that tends toward zero.

The last processing step was the location of the areas extracted from the � ne-
resolution scenes in the coarse spatial resolution data. This was achieved visually,
without formal coregistration of the datasets as the PAL pixels were very large
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Table 1. Subsite summaries.

Subsite # Description Loss (%) Gain (%)

Humid tropical forest in Cameroon

1 Conversion of forest to small-scale agriculture 3.94 1.69
2 Conversion of forest to small-scale agriculture 2.46 0.25
3 Conversion of forest to small-scale agriculture 0.77 4.24
4 Forest modi� cations due to selective logging 0.00 4.02

Dry forest and marigot in Senegal

5 Conversion of agriculture to secondary forest 4.54 2.36
6 Flooding along marigots and expansion of wet rice 20.04 2.22

cultivation in valleys

Plains grassland in Kenya

7 Drought recovery and conversion of grassland to 11.93 1.01
small-scale agriculture

8 Grassland modi� cations due to drought recovery and 19.58 0.50
localized burning or overgrazing (Loita plains)

Dry savanna in Zambia

9 Conversion of savanna to center-pivot agriculture 3.64 5.42
10 Conversion of savanna to subsistence agriculture 3.94 6.91

Forest/savanna boundary in CAR

11 Conversion of forest to small-scale agriculture 3.42 1.31
12 Forest modi� cations due to selective logging 0.49 2.04
13 No signi� cant changes 0.04 2.08

Plains grassland in Tanzania

14 Grassland modi� cations due to drought recovery and 18.31 0.04
localized overgrazing

15 Grassland modi� cations due to drought recovery and 17.20 0.91
localized expansion of agriculture

16 No signi� cant changes 0.01 2.98

relative to the � ne-resolution pixels, and small geolocational discrepancies between
the two databases of the order of a few pixels were essentially irrelevant.

3. Method
3.1. Fine spatial resolution change metrics

Fine spatial resolution estimates of land cover change were produced from NDVI
di� erence images generated from the multi-temporal pairs (� gure 1). These estimates
required the setting of change thresholds for the di� erence images, which were
derived with the assistance of University of Louvain personnel who had visited the
sites. Detailed ground observations of vegetation cover, agricultural practices, wood
exploitation activities, and land use intensity were assembled for each site. Landscape
observations were collected along the main and secondary roads to cover the access-
ible parts of the study areas. Field observations were georeferenced using a global
positioning system (GPS). These � eld data and available aerial photographs for the
most remote areas were used for validation of the remote sensing based land cover
change maps, and to support the interpretation of the statistical results. The output
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Figure 1. Computation of � ne spatial resolution metrics.

statistics from this step represented estimates of the proportion of each subset which
underwent land cover change between the two acquisition dates.

Two measures of change were of interest for each subset (� gure 1). The � rst
represented the proportion of pixels in the subset that underwent some form of land
cover change, i.e. the sum of pixels undergoing a decrease and an increase in
vegetative cover. A second measure represented the proportion of pixels in the subset
that underwent a net gain in vegetative cover, i.e. the number of pixels undergoing
an increase in vegetation cover minus the number of pixels undergoing a decrease
in vegetation cover. The � rst measure illustrated the overall degree of change for a
given subset. The second measure was more speci� c in its characterization of land
cover change as it only detected net changes in one direction, and therefore assumed
that the coarse-resolution change metrics would be sensitive to distinctions between
positive and negative changes.

3.2. Coarse spatial resolution temporal change metrics
Computation of the coarse spatial resolution change metrics proceeded in four

steps (� gure 2). Firstly, the NDVI, T s and T s/NDVI ratio data were assembled into
temporal signatures for each site, for each of the years for which high-resolution
data were available. For some sites, there was no perfect coincidence between the
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Figure 2. Computation of coarse spatial resolution metrics.

years for which both � ne and coarse spatial resolution data were available. In that
case, the closest year was taken, with a maximum of two years lag (with the exception
of the Cameroon site, which used a 1973 image as a baseline).

Secondly, the 8 km pixels associated with each site were spatially aggregated over
the subset for each month and each year. This spatial aggregation was conducted
using two di� erent methods, corresponding to di� erent objectives: (i ) by calculating
the spatial mean for the 2 to 9 adjacent pixels which constituted a particular site—
this identi� ed the average temporal behaviour of the subset; and (ii ) by calculating
the spatial standard deviation for the 2 to 9 adjacent pixels of a site—this was
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intended to identify the seasonal changes in landscape spatial pattern. The concept
of spatial pattern of a landscape includes, for example, the patch size distribution of
residual forests, the location of agricultural plots in relation to natural vegetation,
the shapes of � elds or the number, type and con� guration of landscape elements, i.e.
their spatial heterogeneity. Landscape spatial pattern is seldom static due both to
natural changes in vegetation and human intervention. It can therefore be used as
an indicator of land cover change. Given the limited number of pixels per site
however, the spatial standard deviation should be viewed here with some degree
of caution.

Thirdly, metrics were calculated from the temporal signatures for the two years
of aggregated data which were temporally coincident with the � ne spatial reso-
lution acquisitions. These metrics were (DeFries et al. 1995): annual mean, annual
maximum, annual minimum and annual range (di� erence of maximum and
minimum).

In the last step, once intra-annual metrics were extracted, it was possible to
generate inter-annual land cover change metrics. The change metrics were calculated
as the di� erence in the values of the given annual metrics for the two years of interest
as:

D=Metric (year 2) Õ Metric (year 1) (1)

that is, the di� erence in annual mean, annual maximum, annual minimum and
annual range. In addition to these synthetic change metrics, a more thorough measure
of inter-annual change between two seasonal trajectories of a given land cover change
indicator was represented by the magnitude of the multi-temporal change vector.
This measure, which was described and tested elsewhere previously (Lambin and
Strahler 1994), was computed as:

c(i )=p(i, y) Õ p(i, z) (2)

where c(i ) is the change vector for pixel i between the years y and z and p(i, y) is the
multi-temporal vector for pixel i and the year y:

p(i, y)= KI (t
1
)

I (t2 )

…

I (t
n
) K (3)

where I are the values of the indicator under consideration for pixel i at the time
periods t1 to t

n
, n being the number of time dimensions. The magnitude of the change

vector, |c |, measures the intensity of the change in land cover.
These � ve change metrics were computed for all combinations of land cover

indicators and spatial aggregation methods. Thus, the total number of coarse-
resolution change metrics generated for each site was thirty (given three land cover
indicators, two aggregation methods and � ve temporal metrics).

3.3. Statistical relationships between � ne and coarse spatial resolution change
metrics

Once the measures of land cover change were estimated for each test site, and
each coarse-resolution temporal change metric was generated, the next step was to
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test the statistical strength of the relationships between these measures using statist-
ical models. This testing was performed without regard to land cover change type.
That is, changes due to interannual climatic variability were grouped with
anthropogenic changes and land cover conversions were grouped with land cover
modi� cations.

The � rst approach was univariate linear regression. For each regression, the
dependent variable represented one of the � ne-resolution estimates of land cover
change (total change or net increase in vegetative cover), and the independent
variable was one of the temporal change metrics. This model should be useful for
characterizing net increase, which is a monotonic function of any coarse-resolution
metric. A second approach was to � t a quadratic model to the data as some of the
relationships between the � ne-resolution change and the coarse-resolution metrics
appeared to be nonlinear. Also, the quadratic should be better suited to modelling
total change as it is able to account for nonlinear mixing of gains and losses at � ne
resolution.

Additionally, it was of interest to determine whether combinations of metrics
produced stronger relationships with the � ne spatial resolution data than univariate
models. Employing all of the metrics in a multiple regression did not seem particularly
useful owing to the likelihood of intercorrelations between metrics. Therefore, a third
approach was to relate the metrics to � ne-scale change via a stepwise regression.

4. Results
Intuitively, the coarse-scale metrics should be helpful for detecting certain types

of land cover change and less useful for other sorts. Change vectors respond to
aggregate changes in remote sensing data, and should therefore relate best to the
total change at � ne spatial resolution. The maximum, mean, minimum and range
should all be related to net gain of vegetation.

4.1. Univariate linear regressions
Table 2 shows the results of the strongest univariate linear relationships between

each of the � ne spatial resolution estimates of change and the temporal metrics. The
most interesting outcome is the better statistical performance in detecting changes
with T

s
or T

s
/NDVI than the NDVI alone. Only one NDVI metric is signi� cantly

Table 2. Univariate linear relationships between change metrics and � ne-resolution estimates
of change (n= 16).

Spatial Root mean
Change metric aggregation squared error Adjusted R2

Total change
T s /NDVI ratio, di� erence of maximum values mean 0.042 0.64

(p< 0.0001)
T s , change vector magnitude mean 0.042 0.64

( p< 0.0001)

Net vegetation gain
T s , di� erence of mean values mean 0.057 0.57

(p< 0.0004)
Ts/NDVI ratio, di� erence of mean values mean 0.060 0.52

(p< 0.0009)
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related to either of the � ne-resolution change estimates, but its associated R2 is quite
low (not tabled). Additionally, none of the most useful metrics are based on the
spatial standard deviation.

For the relationships with total � ne-resolution change, the di� erence of the
maximum T s/NDVI ratio values and the change vector magnitude of T s exhibit the
highest R2 statistics (see upper half of table 2). Figure 3 shows the associated scatter
plots along with the � tted regression lines. The di� erence of the maximum T s/NDVI
ratio is inversely proportional to overall change in land cover (� gure 3(a)). This
makes sense because a change in the maximum value of the T

s
/NDVI ratio (high

temperature with low vegetative cover) indicates that the lowest level of vegetative
cover through a seasonal cycle has changed between the years of interest. The T s
change vector magnitude is independent of change direction, and thus should be
positively correlated to the total � ne-resolution change, as is shown in � gure 3(b).

As shown in the lower half of table 2, the strongest relationships with net vegeta-
tion gain at � ne resolution are the di� erence of mean T

s
and the di� erence of the

mean T
s
/NDVI ratio, although neither of these relationships is as strong as those

found for total � ne-resolution change. Figure 4 shows the associated scatter plots
along with the � tted regression lines. The di� erence of mean T s re� ects the inter-
annual variability of surface moisture status (Carlson et al. 1990), which one would
expect to be inversely correlated with vegetation gain (Goward et al. 1985), but it is
not (� gure 4(a)). The di� erence of the mean T

s
/NDVI ratio is proportional to net

gain of vegetation (� gure 4(b)), which is also apparently counterintuitive because this
indicator measures average increase in temperature with a simultaneous decrease in
greenness.

Sites 6, 8, 14 and 15 display a distinct behaviour in these relationships compared
to the other sites (note that the same is true for all of the other relationships with
net vegetation increase examined below). For site 6, which encompasses several valley
bottoms and marigots in Basse Casamance, there was a signi� cant increase in rainfall
between the two years for which the high resolution data were collected (1986 and
1994) (Linares 1995). This has led to an increase in surface moisture. The increase
in water level and valley � oodings has caused a decrease in vegetation cover in these
locations. This process was accelerated by vegetation clearings in valleys for wet rice
cultivation (Linares 1995).

The other sites (8, 14 and 15) are all part of the Serengeti Ecological Unit. This
region was a� ected by a severe drought in 1984 with persistent e� ects on vegetation,
and a slow and progressive recovery of rainfall over the next few years (including
1985 and 1987 which are the years of acquisition of the � rst set of high-resolution
images). This was followed by wetter conditions until the year of acquisition of the
second set of high-resolution images (1995). In addition, these three east African
sites were a� ected by diverse local-scale changes, such as increased � re frequency,
agricultural expansion and increased grazing pressures. The processes leading to
local-scale changes were all spurred by the improved climatic conditions measured
at the regional scale, in addition to being driven by demographic pressures and
changes in land use.

Thus, all four sites were subjected to a combination of regional-scale, climate-
driven land cover modi� cations and local-scale, anthropogenic land cover conver-
sions. The regional-scale changes at all four sites were associated with higher surface
moisture, and therefore a decrease in T s . The local-scale changes at all four sites
were associated with localized decreases in vegetation cover, and therefore decreases



J. S. Borak et al.1424

Figure 3. Best relationships for measuring total change, univariate linear regression. Data
points are plotted by site number as listed in table 1.

in the NDVI. It is very likely that primarily regional-scale processes were detected
at the coarse spatial resolution (decrease in T s and T s/NDVI), while at � ne spatial
resolution, the local-scale changes in vegetation cover dominated the change detected
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Figure 4. Best relationships for measuringnet vegetative increase, univariate linear regression.
Data points are plotted by site number as listed in table 1.

(net vegetation loss). This explains why a negative di� erence in mean or maximum
T s (or T s/NDVI)—i.e. a decrease in T s between year 1 and year 2—was measured
at the coarse spatial resolution, while at the same time, a high value of vegetation
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loss (negative vegetation increase) between year 1 and year 2 was measured at the

� ne spatial resolution for these four sites.
The fact that di� erent land cover change processes might be measured at the

two spatial resolutions renders the interpretation of the statistical results less valid,

unless there is a causal link between the regional-scale and local-scale land cover
change processes. This is thought to be the case here for all four sites, in that the

increase in rainfall between the two years promotes a decrease in vegetation cover
in the valleys (only in Casamance), expansion of agriculture due to the increase in

moisture availability, more biomass burning due to the increase in end-of-season

standing biomass and increased grazing pressure due to the restoration of herds

following the drought.

4.2. Quadratic models

Another means of relating the temporal metrics to � ne-scale change is to � t

simple quadratic models, i.e. no interaction terms, to each of the coarse spatial

resolution metrics. The chief reason for employing quadratic models is to examine

several coarse-scale metrics which do not appear to be linearly related to � ne-scale
change. The T

s
/NDVI ratio metrics tend to be most problematic in this regard.

Also, as stated previously, the quadratic model may aid in accounting for nonlinear

mixing of vegetative gain and loss as estimated from the � ne-resolution data.

For the relationship with total � ne-resolution change, the di� erence of the mean

T s/NDVI ratio exhibits the highest R2 statistic. This metric measures a sort of

annually integrated change in surface characteristics. Figure 5(a) shows the associated

scatterplot and model � t, which indicate that this metric increases in absolute value

as total � ne-resolution change increases, as one would expect. The metric with the
next highest R2, the T

s
change vector magnitude, appears to be a reasonable model

based on its R2 alone (0.65), but the second-order term does not add signi� cantly

to the model, and arti� cially in� ates the R2. Consequently, this metric is not particu-

larly e� ective in the quadratic model. The T s/NDVI ratio change vector magnitude

is the next best of the quadratic models with total � ne-resolution change where both

model terms are signi� cant (the associated R2 is 0.59). Figure 5(b), which shows the

associated plot and model � t, indicates that the T s/NDVI ratio change vector
magnitude increases as total � ne-resolution change increases, although it appears to

saturate near a total change proportion of 0.15.

The best relationship with net vegetation gain at � ne spatial resolution is the

di� erence in the mean T s/NDVI ratio. Both terms are signi� cant in this model,

which is plotted in � gure 6. The di� erence in mean T s/NDVI ratio appears to

saturate near a net increase proportion of 0.05. The metric with the next highest R2
is the di� erence in mean T s . In this case, the second-order term is not signi� cant, so
the metric is not e� ective in the quadratic model.

Note that some of the quadratic functions are not monotonic over the domain

of the associated coarse-resolution metric. In those cases, there are two possible

values of coarse-resolution metrics for a single value of the � ne-resolution metrics

and the model cannot be inverted. The relationship shown in � gure 5(b) could be

problematic in this regard.

The results of the best overall quadratic relationships between the � ne-resolution
estimates of change and the temporal metrics are summarized in table 3. Again,
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Figure 5. Best relationships for measuring total change, quadratic model. Data points are
plotted by site number as listed in table 1.

T s and the T s/NDVI ratio are more strongly related to change than the NDVI
alone (no statistically signi� cant metrics), and the most useful metrics are based on
spatial means.
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Figure 6. Best relationships for measuring net vegetative increase, quadratic model. Data
points are plotted by site number as listed in table 1.

4.3. Stepwise regressions
The aim of employing stepwise regression is to determine whether combinations

of temporal metrics relate better to � ne-scale change than do the univariate linear
or quadratic models. Clearly, intercorrelation between the coarse-scale metrics is
di� cult to avoid, but those variables which complement one another are of interest.
Table 4 shows the best combinations for each � ne-resolution change estimate, in
order of decreasing contribution to the multivariate R2. The selected variables consist
mainly of metrics based on spatial means, although both of the stepwise models
contain metrics based on spatial standard deviations. The R2 statistics for these
multivariate models are noticeably greater than those achieved with univariate linear
regression. For the quadratic models, the stepwise regression models are better for
total change, but not for net gain.

The estimates of total � ne-resolution change are predicted best by combining
into a single model the di� erence in maximum T s/NDVI ratio based on spatial

Table 3. Quadratic relationships between change metrics and � ne-resolution estimates of
change (n= 16).

Spatial Root mean
Change metric aggregation squared error Adjusted R2

Total change
T s /NDVI ratio, di� erence of mean values mean 0.038 0.70

(p< 0.0002)
T s /NDVI ratio, change vector magnitude mean 0.044 0.59

( p< 0.0004)

Net vegetation gain
T s /NDVI ratio, di� erence of mean values mean 0.043 0.75

(p< 0.0001)
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Table 4. Stepwise linear regressions between change metrics and � ne-resolution estimates of
change (n= 16).

Spatial Root mean
Change metric aggregation squared error Adjusted R2

Total change
T s /NDVI ratio, di� erence of maximum values mean 0.026 0.86
T s /NDVI ratio, di� erence of mean values std. dev. (p< 0.0001)
T s , change vector magnitude mean

Net vegetation gain
T s , di� erence of mean values mean 0.042 0.77
T s , di� erence of ranges std. dev. (p< 0.0001)

means, the di� erence in mean T s/NDVI ratio based on spatial standard deviations
and the T

s
change vector magnitude based on spatial means. Due to their strong

relationship to total change in the univariate linear analysis, selection of the � rst
and third variables is unsurprising. It is of note, however, that their information
content is complementary. The second metric, the di� erence in mean T s/NDVI ratio
based on spatial standard deviations, is not strongly related to total change with
univariate linear regression, but it adds signi� cantly to the multivariate model. The
sign of its relationship with total change at � ne spatial resolution is negative,
indicating that as total change increases, the mean annual spatial heterogeneity of
the T s/NDVI ratio decreases. For some change processes this makes sense, for others
it does not. In fact, Estreguil and Lambin (1996) have demonstrated that the
relationship between the level of landscape disturbance and the spatial heterogeneity
of a landscape has an inverted-U shape, i.e. landscape heterogeneity � rst increases
with initial levels of disturbances (due to landscape fragmentation) and then decreases
with more severe disturbances ( leading to a homogeneous, completely cleared
landscape).

For the relationship with net vegetation gain at � ne spatial resolution, the metrics
selected by stepwise regression are the di� erence in mean T s based on spatial means
and the di� erence in T

s
range based on spatial standard deviations. As with the

univariate linear regression model, the di� erence in T
s

mean is strongly related to
� ne-resolution vegetation gain. The di� erence in T s range based on spatial standard
deviations is not strongly related to � ne-scale vegetation gain in the univariate linear
case, but it adds signi� cantly to the multivariate model. This metric may be useful
for detecting subtle vegetation changes because it captures the range in annual spatial
heterogeneity as measured by the T

s
/NDVI ratio. The sign of this relationship

is positive.

5. Discussion
One potential source of error in this study is the use of the � ne-resolution

measures of change as ‘truth’. Although based on detailed � eld assessments, errors
of omission or commission may have been introduced when identifying land cover
change in the Landsat and SPOT images. Due to time constraints, it was not possible
to perform a formal accuracy assessment, but the quality of the � eld data is such
that the change estimates may be considered reasonably reliable nonetheless.

Another point that should be stressed is that the � ne-resolution and coarse-
resolution change metrics can measure di� erent land cover change processes.
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Regional-scale processes may not be detectable at a local scale and vice versa. If the
processes are unrelated, the statistical relationships cannot be modelled by the
techniques presented here, and more complicated statistical approaches should be
applied. If, however, a causal relationship exists between the two, as illustrated in
the results of this study, the methodology presented here is valid. In this study, we
suspect that di� erent processes of change are measured at the � ne and coarse spatial
resolutions only when employing the � ne resolution change metric which measures
the net increase in vegetation. This is not the case with a measure of the total change
taking place. The latter metric is more of a crude, aggregate measure of change,
which is therefore more likely to be related to the changes measured at coarse spatial
resolution.

Not only can � ne-resolution and coarse-resolution change metrics measure
di� erent processes, but the di� erent coarse-resolution land cover indicators can
respond to di� erent types of land cover change. For example, T s and the T s/NDVI
ratio are in all cases more strongly related to the � ne-resolution estimates of change
than the NDVI alone. As all of the change processes have been grouped in this
study, one possible explanation is that the variability of NDVI cannot be generalized
in terms of how it relates to speci� c land cover types and their conversions, but T s
and the T s/NDVI ratio may be better suited to measuring change in general,
regardless of type. More speci� cally, the NDVI could be related more closely to
individual conversion processes while T

s
and the T

s
/NDVI are more sensitive to

climate-driven land cover modi� cations which better lend themselves to general
descriptions of change.

Also of note is the inherent utility of the statistical models employed in this
research to describe � ne-resolution change. Net gain is a quantity that should exhibit
linear behaviour across the domain of a given coarse-resolution metric as it is a
linear function of any coarse-resolution metric. Total change may be best described
by a higher order function (such as a quadratic) that is able to model a nonlinear
mixture of losses and gains at � ne resolution, as suggested by � gure 5.

Lastly, it is important to bear in mind that the sample size and geographic
coverage of this study are limited. Just 16 test sites from sub-Saharan Africa were
used to � t the univariate linear, quadratic and stepwise models. Clearly, caution
must be exercised when extrapolating these � ndings to other experiments or environ-
ments. The current research is designed to be an exploratory analysis, and in the
absence of actual MODIS or VEGETATION data, a degree of uncertainty is
unavoidable.

6. Conclusions
Several conclusions may be drawn from the current research. First, relationships

between � ne-scale change and coarse spatial resolution metrics are non-random.
This is encouraging given the fact that the PAL dataset is spatially much coarser
than what will be available from MODIS or VEGETATION, and the radiometric
quality of these data sources will greatly exceed that of AVHRR data.

Secondly, the T
s

and T
s
/NDVI ratio metrics are statistically better at detecting

changes than the NDVI metric alone. This con� rms the importance of T s data as
being a complementary source of information (at the very least) to NDVI data.

Thirdly, the results of the stepwise regressions clearly show that multivariate
combinations of the temporal metrics represent statistical and substantive improve-
ments over the univariate linear or quadratic models. The R2 statistics are consistently
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highest for the multiple regressions. Additionally, the variables selected by the step-
wise procedure complement one another, and in fact draw on information from the
temporal, spectral and (possibly) spatial domains.

We are fully aware of the numerous limitations of AVHRR time-series data and
of the artefacts generated due to their coarse spatial resolution. They are, however,
the only data currently available for use in an experiment such as this one. The
statistically signi� cant relationships found in this study suggest that the implemen-
tation of a land cover change product based on 1 km resolution MODIS or
VEGETATION data will succesfully detect a range of land cover change processes
of interest for global change studies.

In this study, three sources of variation in the change metrics were considered
simultaneously: di� erences in spatial resolution, in temporal resolution and in
land cover indicator. Future work will examine the impact on change metrics of
each source of variation independently, by keeping the other two constant. This will
allow us to conduct a more explicit comparison of the information provided by
� ne-resolution ‘snapshots’ and coarse-resolution continuous time-series data.
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